Diamagnetic Anisotropies of some Organic Molecules

By M.A.Lasheen*
Department of Crystallography, University College, London W.C.1, England

(Received 12 September 1967)

Abstract

The diamagnetic anisotropies of some crystals of aromatic and aliphatic compounds of known structure have been measured and the molecular susceptibilities and anisotropies deduced from these and the molecular orientations. The molecular anisotropy can usually be calculated with a good degree of accuracy even in cases where the mean absolute susceptibility is not known with certainty. The molecular susceptibilities and anisotropies may be correlated with bond lengths and angles in the hope of presenting some information concerning the effect of substitution on conjugation. This has a strong influence on the values of the molecular susceptibilities and anisotropies of the aromatic compounds and in general markedly decreases the anisotropy. This decrease varies not only with the nature of the substituents (heavy atom, compact group or aliphatic chain) but with their positions on the nucleus.

Introduction

The present work is a part of a project undertaken to provide a quantitative knowledge of the principal susceptibilities and anisotropies of organic molecules, aromatic and aliphatic, of different shapes and containing various electronic groupings. Aromatic compounds containing different numbers of rings with different substituents and aliphatic compounds containing six-membered rings, five-membered rings and open chains have been studied previously (Lasheen, 1964). In this paper some more such compounds are investigated. The aromatic compounds include three rings, two rings or one ring with different substituents while the aliphatic compounds investigated are theophylline, 2,6-dimethyl- γ-pyrone and glycine. Theophylline contains a six-membered ring (a substituted pyrimidine ring) and a five-membered ring (an imidazole ring) sharing a double $C=C$ bond, while $2,6-$ dimethyl $-\gamma$ pyrone contains a six-membered ring (a γ-pyrone ring).

The Krishnan \& Banerjee (1935) method was used in the determination of the magnetic anisotropies of the crystals. Several crystals of different weights and sizes were used for each compound when possible and measurements were carried out on every crystal in at least three different orientations. A high-accuracy balance was used to determine the crystal weight just before the magnetic measurements were carried out. Volatilization or loss of weight could always be detected from repeated measurements on the same crystal. In such cases the crystal was weighed just before and just after the magnetic measurements and the average weight used, the measurements being carried out in the least possible time.

In the case of monoclinic crystals the crystal susceptibility parallel to [010] is taken as χ_{3} while χ_{1} and χ_{2} denote the values in the (010) plane, χ_{1} being alge-

[^0]braically greater than χ_{2}. The molecular susceptibilities are denoted by K_{L} and K_{M} in the molecular plane and K_{N} normal to it, and the molecular anisotropy $\Delta K=$ $\left(K_{L}+K_{M}\right) / 2-K_{N}$. The directions taken for K_{L} and K_{M} are indicated below for each molecule; K_{L} is usually along the length of the molecule. The unit of susceptibility or anisotropy is 10^{-6} e.m.u.g ${ }^{-1}$ throughout, and is omitted hereafter.

The unit-cell dimensions and orientation of the crystal of each compound were always determined from X-ray rotation and Laue photographs to be sure that the substance investigated was the one whose crystal structure was assumed as known.

The transition from crystalline to molecular susceptibilities was carried out by the use of molecular direction cosines and the mathematical relations given by Lonsdale \& Krishnan (1936).

It was noticed that small experimental errors in the crystal magnetic anisotropies could lead in some cases to very large errors in the molecular susceptibilities and anisotropies and for that reason the variances in the crystal magnetic susceptibilities and the resulting probable errors in the molecular susceptibilities and anisotropies were calculated by the methods given for the study of these errors in orthorhombic crystals by Lasheen \& Tadros (1968) and in monoclinic crystals by Walley (1967).

The crystal structure was determined by Mathieson, Robertson \& Sinclair (1950) and by Sinclair, Robertson \& Mathieson (1950) and refined by Cruickshank (1956). $a=8 \cdot 561, b=6 \cdot 035, c=11 \cdot 163 \AA, \beta=124^{\circ} 42^{\prime}$; $Z=2 ; P 2_{1} / a$.

The molecular susceptibilities of anthracene have been determined previously by Lonsdale \& Krishnan (1936) and by Lumbroso-Bader (1956). The former authors found $\Delta K=182 \cdot 6$ while the latter gave $\Delta K=$ $172 \cdot 1$. One is more than three times that of benzene, $\Delta K=59 \cdot 7$ (Hoarau, Joussot-Dubien, Lemanceau, Lumbroso \& Pacault, 1956), while the other is much lower. ΔK for anthracene is expected to be only a little less than three times that for benzene. Thus it was decided to redetermine the molecular susceptibilities of this substance.

Thin prismatic six-sided plates with (001) as the plate face were used. Five different crystals of weights $3 \cdot 5$, $2 \cdot 6,2 \cdot 5,1 \cdot 7$ and $1 \cdot 6 \mathrm{mg}$ were chosen.

The magnetic measurements together with those found by Lonsdale \& Krishnan and by LumbrosoBader are shown in Table 1.

The direction cosines of the molecular axes L, M, and N referred to the three orthogonal axes a, b and c^{\prime} are:

\[

\]

The molecular susceptibilities and anisotropy are shown in Table 2 together with those found by Lonsdale \& Krishnan and by Lumbroso-Bader.

Hexachlorobenzene, $\mathbf{C}_{6} \mathbf{C l}_{6}$

The crystal structure was determined by Tulinsky \& White (1958) who gave $a=8 \cdot 08, b=3.87, c=16.65 \AA$, $\beta=117 \cdot 0^{\circ} ; Z=2 ; P 2_{1} / c$.

The molecule is plane and hexagonal with $\mathrm{C}-\mathrm{C}=$ $1.39 \AA$ and $\mathrm{C}-\mathrm{Cl}=1.70 \AA$.
Crystals from benzene solution were long platy needles elongated along [010] with (100) as the plate face.
The magnetic data are shown in Table 3 together with those found by Krishnan \& Banerjee (1935). The two sets are in reasonable general agreement except for ψ. The angle between χ_{2} and [100] was found to be -25.6° by Krishnan \& Banerjee while it is $+21 \cdot 1^{\circ}$ in the present work.
Three different sets of direction cosines for the axes L, M and N of the benzene ring were calculated with L parallel to each of the lines joining the two symmetrical carbon atoms i.e. parallel to $\mathbf{C}(1) \mathrm{C}\left(1^{\prime}\right)$, parallel

Table 1. Magnetic anisotropies and susceptibilities of anthracene crystal compared with those given by Lonsdale \& Krishnan (1936) and by Lumbroso-Bader (1956)

$\psi\left(\right.$ angle χ_{1} : [001], positive in obtuse β).									
	$\chi_{1}-\chi_{2}$	$\chi_{3}-\chi_{2}$	$\chi_{1}-\chi_{3}$	$\psi_{\text {obs }}$	$\psi_{\text {calc }}$	χ_{M}	χ_{1}	χ_{2}	χ_{3}
Present work	$140 \cdot 5$	$108 \cdot 1$	32.4	$+9 \cdot 45 \pm 1 \cdot 10$	$+9 \cdot 4 \pm 1 \cdot 1$	-130*	$-72 \cdot 4 \pm 2 \cdot 0$	$-212 \cdot 9 \pm 2 \cdot 0$	$-104 \cdot 8 \pm 1 \cdot 0$
Lonsdale \& Krishnan	(136.3) \dagger	(108.9)	(27.4)	$+8.0$	+8.9	(-130•1)	$-75 \cdot 5$	-211.8	-102.9
Lumbroso-Bader	$140 \cdot 3$	108.2	(32-1)	$+8.0$		$-134 \cdot 2 \ddagger$	$-76 \cdot 7$	-217.0	-108.8

* Absolute mean value $\bar{\chi}_{M}$ determined by Akamatsu \& Matsunaga (1956).
\dagger Values between brackets are calculated from given susceptibilities.
\ddagger Absolute mean value determined by Pacault (1946).

Table 2. Anthracene molecular susceptibilities and anisotropy compared with those given by Lonsdale \& Krishnan (1936) and by Lumbroso-Bader (1956)

	K_{L}	K_{M}	K_{N}	ΔK
Present work	$-72 \cdot 4 \pm 2 \cdot 0$	$-71 \cdot 8 \pm 1 \cdot 7$	$-245 \cdot 7 \pm 2 \cdot 7$	$173 \cdot 6 \pm 3 \cdot 0$
Lonsdale \& Krishnan	$-75 \cdot 8$	$-62 \cdot 6$	$-251 \cdot 8$	$182 \cdot 6$
Lumbroso-Bader	$-76 \cdot 9$	$-76 \cdot 6$	$-248 \cdot 9$	$172 \cdot 1$

Table 3. Magnetic anisotropies and susceptibilities of hexachlorobenzene crystal compared with those found by Krishnan \& Banerjee (1935)
$\left.\begin{array}{lccccccccc} \\ & \chi_{1}-\chi_{2} & \chi_{2}-\chi_{3} & \chi_{1}-\chi_{3} & \psi \text { (angle } & \chi_{1}:[001] \text {, positive in obtuse } \beta \text {). } & \psi_{\text {obs }} & \psi_{\text {calc }} & \chi_{M} & \chi_{1}\end{array}\right]$

[^1]to $\mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right)$ and to $\mathrm{C}(3) \mathrm{C}\left(3^{\prime}\right) . M$ is in each case perpendicular to L in the plane of the ring and N is normal to that plane. These referred to the orthogonal axes a, b and c^{\prime}, and the molecular susceptibilities deduced in each case are as shown in Table 4.

The second series of results is not reasonably regular, since K_{L} is numerically greater than K_{M} in the first two cases but less in the third case. Also comparing the three sets of values with those of pentachlorophenol ($K_{L}=-125 \cdot 5, K_{M}=-125 \cdot 3$ i.e. $K_{L}=K_{M}$, Table 5), it is clear that the first series of results probably gives the correct values. That is, the molecules of pentachlorophenol and hexachlorobenzene are both magnetically uniaxial. The difference between the three values of K_{N} is possibly due to the carbon atoms not being exactly coplanar. Taking K_{N} as the mean of the three values and $K_{L}=K_{M}$, the molecular susceptibilities of hexachlorobenzene are shown in Table 5, together with those of some other similar compounds.

Pentachlorophenol, $\mathrm{C}_{6} \mathrm{Cl}_{5}(\mathbf{O H})$

The crystal structure of pentachlorophenol was determined by Sakurai (1962), who gave: $a=29 \cdot 11, b=$ $4.930, c=12.09 \AA, \beta=93^{\circ} 38^{\prime} ; Z=8 ; C 2 / c$. All the
carbon atoms are coplanar within experimental error. The deviation of the chlorine and oxygen atoms from this plane is also very small.

Crystals of pentachlorophenol suitable for the magnetic measurements were crystallized from ethyl alcohol in the form of prismatic plates elongated along [010] with (100) as the plate face. Four crystals weighing $17.8,17.4,8.0$ and 2.4 mg were used. The crystal magnetic anisotropies are:

$$
\chi_{1}-\chi_{2}=24 \cdot 9, \chi_{1}-\chi_{3}=23 \cdot 5, \chi_{3}-\chi_{2}=1 \cdot 4
$$

$\psi\left(\right.$ angle $\chi_{1}:[001]$, positive in obtuse β)

$$
\begin{aligned}
& =+81 \cdot 4 \pm 1 \cdot 5^{\circ} \mathrm{obs} \\
& =+82 \cdot 7 \pm 5 \cdot 5^{\circ} \mathrm{calc}
\end{aligned}
$$

Using $\bar{\chi}_{M}=-194.0$ given in International Critical Tables for pentabromophenol, Pascal's additive value for pentachlorophenol is $\bar{\chi}_{M}=-141 \cdot 5$. Thus the crystal susceptibilities are:
$\chi_{1}=-125 \cdot 4 \pm 0 \cdot 7, \chi_{2}=-150 \cdot 3 \pm 0 \cdot 7, \chi_{3}=-148 \cdot 9 \pm 0 \cdot 3$.
The direction cosines of the molecular axes L, M and N, considering the plane of the carbon atoms only, referred to the orthogonal axes a^{\prime}, b and c are:

	a^{\prime}	b	c
L	0.9814	0.0769	0.1758
M	0.1778	-0.7094	-0.6823
N	0.0651	0.7006	-0.7114

The molecular susceptibilities and anisotropy of pentachlorophenol are shown in Table 5, together with those of tetrachlorohydroquinone (Lasheen, 1964) and hexachlorobenzene.

Table 4. Direction cosines and molecular susceptibilities in hexachlorobenzene

Table 5. Molecular susceptibilities and anisotropies of tetrachlorohydroquinone (Lasheen, 1964) hexachlorobenzene and pentachlorophenol

	K_{L}	K_{M}	K_{N}	ΔK
Tetrachlorohydroquinone	$-103 \cdot 0$	$-114 \cdot 3$	$-144 \cdot 9$	$36 \cdot 3$
Hexachlorobenzene	$-132 \cdot 3 \pm 0 \cdot 3$	$-132 \cdot 3 \pm 0 \cdot 3$	$-177 \cdot 4 \pm 0 \cdot 4$	$44 \cdot 8 \pm 0 \cdot 5$
Pentachlorophenol	$-125 \cdot 5 \pm 0 \cdot 6$	$-125 \cdot 3 \pm 18 \cdot 8$	$-173 \cdot 8 \pm 18 \cdot 9$	$48 \cdot 4 \pm 21 \cdot 1$

It was found that small experimental errors in the crystal magnetic anisotropies of this compound lead to very large probable errors in its molecular susceptibilities and anisotropies as shown in Table 5.

1,4-Dimethoxybenzene, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCH}_{3}\right)_{2}$

The crystal structure of 1,4-dimethoxybenzene was determined by Goodwin, Przybylska \& Robertson (1950) who gave: $a=7 \cdot 29, b=6 \cdot 30, c=16 \cdot 55 \AA ; Z=4$; Pbca. The molecule is centrosymmetrical and planar.

The p-dimethoxybenzene crystals were obtained from its solution in methyl alcohol as six-sided flat prisms elongated along [100] with (001) as the plate face. Three crystals of weights $44 \cdot 8,19.7$ and 4.4 mg were used in the measurements. The crystals were losing weight slowly by volatilization, so the necessary precautions were considered.
The crystal magnetic anisotropies are:

$$
\chi_{c}-\chi_{a}=35 \cdot 3, \chi_{b}-\chi_{a}=18 \cdot 2, \chi_{c}-\chi_{b}=17 \cdot 1 \text { obs. }
$$

($17 \cdot 1$ calc.)
French (1945) found $\bar{\chi}_{M}=-86 \cdot 65$, thus the crystal susceptibilities are:

$$
\chi_{a}=-104 \cdot 5 \pm 0 \cdot 2, \chi_{b}=-86 \cdot 3 \pm 0 \cdot 3, \chi_{c}=-69 \cdot 2 \pm 0 \cdot 3 .
$$

The direction cosines of the molecular axes L, M and N referred to the crystal axes and hence the molecular susceptibilities are:

	a	b	c
L	0.0290	0.3635	0.9313
M	0.5499	-0.7836	0.2887
N	0.8348	0.5038	-0.2228

$$
\begin{aligned}
& K_{L}=-65 \cdot 6 \pm 0 \cdot 4 \\
& K_{M}=-78 \cdot 6 \pm 0 \cdot 7 \\
& K_{N}=-115 \cdot 8 \pm 0 \cdot 5 \\
& \Delta K=43 \cdot 7 \pm 0 \cdot 6
\end{aligned}
$$

m-Dinitrobenzene, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$

The crystai structure of m-dinitrobenzene was determined by Trotter (1961). $a=13 \cdot 20, b=13 \cdot 97, c=3 \cdot 80 \AA$; $Z=4 ; P b n 2_{1}$. The carbon and nitrogen atoms are all coplanar but the nitro groups are twisted out of this plane about the $\mathrm{C}-\mathrm{N}$ bonds by 11.8° for $\mathrm{N}(1) \mathrm{O}(1) \mathrm{O}(2)$ and $9 \cdot 6^{\circ}$ for $\mathrm{N}(2) \mathrm{O}(3) \mathrm{O}(4)$.
Needles elongated along [001] with (100) as the plate face were crystallized from ethyl alcohol. Four crystals of weights $16 \cdot 2,12 \cdot 0,8 \cdot 9,8.6 \mathrm{mg}$ were used in the measurements.
The magnetic data together with those found by Banerjee (1938) and by Banerjee \& Bhattacharjya (1938) are shown in Table 6.

The direction cosines of the three molecular axes L, M and N where N is normal to the plane of the benzene ring, M is parallel to the line joining the two carbon atoms connected to the nitro groups and L perpendicular to M in the plane of the ring, are:

	a	b	c
L	0.5786	-0.7238	0.3744
M	0.8109	0.5596	-0.1713
N	0.0871	-0.4048	-0.9103

Thus the molecular susceptibilities are:

$$
\begin{aligned}
& K_{L}=-50 \cdot 0 \pm 6 \cdot 9, K_{M}=-41 \cdot 7 \pm 2 \cdot 1, \\
& K_{N}=-119 \cdot 8 \pm 6 \cdot 7, \Delta K=74 \cdot 0 \pm 7 \cdot 6
\end{aligned}
$$

The crystal structure of theophylline, which contains a six-membered ring (a substituted pyrimidine ring)

Table 6. Magnetic anisotropies and susceptibilities of m-dinitrobenzene crystal compared with those found by S. Banerjee (1938) and by K. Banerjee \& Bhattacharjya (1938)

	$\chi_{a}-\chi_{c}$	$\chi_{b}-\chi_{c}$	$\begin{gathered} \chi_{a} \\ \text { obs. } \end{gathered}$	calc.	$\bar{\chi}_{M}$	χ_{a}	$\chi{ }^{\text {b }}$	χ_{c}
Present work	$62 \cdot 4$	$48 \cdot 6$	$13 \cdot 8$	$13 \cdot 8$	-70.53*	$-45 \cdot 1 \pm 2 \cdot 3$	$-58.9 \pm 2 \cdot 4$	$-107 \cdot 5 \pm 4 \cdot 6$
S. Banerjee	$62 \cdot 2$	$48 \cdot 5$	$13 \cdot 8$	$13 \cdot 7$	-68.9	$-43 \cdot 6 \dagger$	$-57 \cdot 3$	$-105 \cdot 8$
K. Banerjee \& Bhattacharjya	59.92	49.80	$10 \cdot 25$					

and a five-membered ring (an imidazole ring), was determined by Sutor (1958). $a=13 \cdot 3, b=15 \cdot 3, c=4 \cdot 50$ $\AA, \beta=99.5^{\circ} ; Z=4 ; P 2_{1}$. The whole molecule is planar with the exception of a carbon atom in one of the methyl groups; other deviations are not significant.

Two crystals weighing 44.7 and 16.0 mg were used in the magnetic measurements. They were crystallized from aqueous solution as needles elongated along [001] with faces $\{110\}$. The suspension of the crystal with [010] vertical or with (100) horizontal was made possible by setting the crystal by X-ray diffraction with [010] vertical and then attaching to it a very fine glass fibre of negligible weight. Measurements were carried out with the fibre attached and then without to be sure that it had no effect on the results.

The crystal magnetic anisotropies are:

$$
\chi_{1}-\chi_{2}=59 \cdot 2, \chi_{3}-\chi_{2}=56 \cdot 6, \chi_{1}-\chi_{3}=2 \cdot 6
$$

$\psi\left(\right.$ angle $\chi_{1}:[001]$, positive in obtuse $\left.\beta\right)=$

$$
\begin{gathered}
-48 \cdot 8 \pm 0 \cdot 9 \text { obs } \\
(-48 \cdot 0 \pm 3 \cdot 0 \text { calc. })
\end{gathered}
$$

Pascal's additive value for the mean molecular susceptibility using the correction constants found by Pacault (1946) for the pyrimidine $(\lambda=+6 \cdot 5)$ and the imidazole $(\lambda=+8 \cdot 0)$ rings is $\bar{\chi}_{M}=-84 \cdot 2$. The experimental value determined recently by Lasheen \& Korayem (1967) is $\bar{\chi}_{M}=-84 \cdot 28$. Thus the crystal susceptibilities are:
$\chi_{1}=-63 \cdot 6 \pm 1 \cdot 0, \chi_{2}=-122 \cdot 8 \pm 1 \cdot 0, \chi_{3}=-66 \cdot 2 \pm 2 \cdot 0$.
The direction cosines of the molecular axes L, M and N referred to orthogonal axes a^{\prime}, b and c are:

	a^{\prime}	b	c
L	0.7525	-0.0959	-0.6515
M	0.1783	0.9816	0.0615
N	0.6344	-0.1598	0.7562

Hence the molecular susceptibilities are:

$$
\begin{aligned}
& K_{L}=-63 \cdot 4 \pm 1 \cdot 0, K_{M}=-64 \cdot 7 \pm 2 \cdot 1 \\
& K_{N}=-124 \cdot 5 \pm 1 \cdot 1, \Delta K=60 \cdot 4 \pm 1 \cdot 6
\end{aligned}
$$

2,6-Dimethyl- γ-pyrone, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$

The crystal structure of 2,6-dimethyl- γ-pyrone was determined by Brown, Norment \& Levy (1957) who gave $a=7.672, b=7.212, c=13.92 \AA, \beta=120^{\circ} 59^{\prime} ; Z=4$; $P 2_{1} / c$. The carbon-oxygen skeleton of the molecule is planar. It may be concluded from the bond lengths
that the most important resonance structure for the molecule is the normal covalent ketonic structure.

Large prismatic crystals of 2,6-dimethyl- γ-pyrone were obtained from its aqueous solution with (100) and (201) as the prominent faces; (001) appeared occasionally. After some trials it was possible to grow small platy crystals with (100) as the plate face which are just suitable for magnetic measurements. Four crystals of weights $134 \cdot 6,16 \cdot 6,15 \cdot 3$ and $8 \cdot 1 \mathrm{mg}$ were used. The crystal magnetic anisotropies are:

$$
\chi_{1}-\chi_{2}=21 \cdot 2, \chi_{1}-\chi_{3}=5 \cdot 4, \chi_{3}-\chi_{2}=15 \cdot 8
$$

$\psi\left(\right.$ angle $\chi_{1}:[001]$, positive in obtuse $\left.\beta\right)=$

$$
\begin{gathered}
+21 \cdot 3 \pm 2 \cdot 3 \text { obs. } \\
(+20 \cdot 7 \pm 4 \cdot 5 \text { calc. })
\end{gathered}
$$

Pascal's additive value for the mean susceptibility $\chi_{M}=-69.7$ was calculated with use of the correction constant $(\lambda=-1 \cdot 4)$ for γ-pyrone ring found by Pacault (1946). Thus,

$$
\begin{array}{r}
\chi_{1}=-60 \cdot 85 \pm 0 \cdot 35, \chi_{2}=-82 \cdot 05 \pm 0 \cdot 35 \\
\chi_{3}=-66 \cdot 25 \pm 0 \cdot 67 .
\end{array}
$$

The direction cosines of the molecular axes L, M and N where L is parallel to the line joining the oxygen atom of the ring and the opposite carbon atom connected to the second oxygen atom, N is normal to the molecular plane and M perpendicular to L in that plane were calculated. These referred to the three orthogonal axes a^{\prime}, b and c are:

	a^{\prime}	b	c
L	0.5667	0.7090	0.4193
M	0.1025	-0.5657	0.8180
N	0.8156	-0.4231	-0.3948

Thus the molecular susceptibilities and anisotropy are:

$$
\begin{aligned}
& K_{L}=-62 \cdot 9 \pm 3 \cdot 0, K_{M}=-59 \cdot 7 \pm 2 \cdot 5 \\
& K_{N}=-86 \cdot 6 \pm 0 \cdot 7, \Delta K=25 \cdot 3 \pm 2 \cdot 1
\end{aligned}
$$

Glycine, $\mathbf{C H}_{\mathbf{2}} \mathbf{(\mathbf { N H } _ { \mathbf { 2 } }) \cdot \mathbf { C O O H }}$

The crystal structure of the usual α form of glycine was refined by Marsh (1958), who gave $a=5 \cdot 102, b=$ $11 \cdot 97, c=5 \cdot 4575 \AA, \beta=111 \cdot 7^{\circ} ; Z=4 ; P 2_{1} / n$. The carbon and oxygen atoms are nearly planar.

Glycine crystals grown by slow evaporation from aqueous solution were prismatic elongated along [001] with the edge [100] apparent. Three crystals of weights $30 \cdot 4,12 \cdot 9$ and $10 \cdot 3 \mathrm{mg}$ were used. The crystal magnetic anisotropies are shown in Table 7 together with those found by Gordon (1960).

The mean molecular susceptibility determined by Perceau (1953) and hence the crystal susceptibilities are:

$$
\begin{aligned}
\bar{\chi}_{M}=-40 \cdot 3, \chi_{1} & =-37 \cdot 67 \pm 0.08, \\
\chi_{2} & =-39 \cdot 37 \pm 0.08, \chi_{3}=-43.87 \pm 0.13 .
\end{aligned}
$$

The interesting part of this molecule is the carboxyl group, which is the only part where resonance may be expected.

The direction cosines of the molecular axes referred to the orthogonal axes a^{\prime}, b and c and the resulting molecular susceptibilities and anisotropy are:
(1) Considering the plane of the carboxyl group COO only:

$$
\begin{array}{ccccc}
>\mathrm{C}=\mathrm{O} & L & 0.8739 & -0.2903 & 0 . \\
& & 0.3899 \\
& & 0.4107 & 0.0120 & -0.9117 \\
& & 0.2611 & 0.9563 & 0.1302 \\
& K_{L} & =-37.02 \pm 0.10 & \\
& K_{M}= & =39.41 \pm 0.08 \\
& K_{N} & =-44.57 \pm 0.15 & \\
& \Delta K & = & 6.355 \pm 0.159 &
\end{array}
$$

(2) Considering the plane of the four carbon and oxygen atoms:

$$
\begin{aligned}
& K_{L}=-36 \cdot 92 \pm 0 \cdot 10 \\
& K_{M}=-39 \cdot 40 \pm 0 \cdot 08 \\
& K_{N}=-44 \cdot 68 \pm 0 \cdot 15 \\
& \Delta K=6 \cdot 52 \pm 0 \cdot 16
\end{aligned}
$$

These values may be compared with those found before (Lasheen, 1964) for the carboxyl group in half of the ammonium hydrogen D-tartrate molecule, which are:

$$
\begin{aligned}
& K_{L}=-37 \cdot 41, K_{M}=-38 \cdot 57, \\
& K_{N}=-46 \cdot 80, \Delta K=8 \cdot 81 .
\end{aligned}
$$

Conclusion

In some of the above cases where the mean susceptibility has not been measured absolutely, it has been estimated from semi-empirical considerations. This may result in some errors in the absolute values of K_{L}, K_{M} and K_{N} but it is found that even a ten per cent error in $\bar{\chi}_{M}$ makes an almost negligible difference in ΔK. The molecular anisotropy may therefore be taken as far more accurate than the absolute values of the three molecular susceptibilities, in such cases.
In some special cases small experimental variances in the crystal magnetic anisotropies may lead to large apparent errors in the molecular susceptibilities and anisotropies. These probable errors were calculated in this paper for all the substances investigated (Table 8).

I wish to express my gratitude to Professor Dame Kathleen Lonsdale, F.R.S. for her interest and en-

Table 7. Magnetic anisotropies of glycine crystals compared with those determined by Gordon (1960)

	ψ (angle $\chi_{1}:[$ [001], positive in obtuse β).				
	$\chi_{1}-\chi_{2}$	$\chi_{1}-x_{3}$	$\chi_{2}-\chi_{3}$	$\psi_{\text {obs }}$	$\psi_{\text {cale }}$
	Present work	1.7	$6 \cdot 2$	4.5	$+48 \cdot 0 \pm 1 \cdot 1^{\circ}$
Gordon	1.59	6.17	4.58	$+46 \pm 2^{\circ}$	

Table 8. Molecular susceptibilities and anisotropies with probable errors resulting from the experimental variances
Less symmetrical planar or non-planar molecules which have only approximate principal molecular magnetic axes are marked *. The directions of these chosen molecular axes are not far from the real molecular magnetic axes for most of these marked molecules.

Compound \dagger	K_{L}	K_{M}	K_{N}	ΔK
Aromatic compounds				
Anthracene	$-72 \cdot 4 \pm 2 \cdot 0$	$-71.8 \pm 1 \cdot 7$	$-245 \cdot 7 \pm 2 \cdot 7$	$173 \cdot 6 \pm 3 \cdot 0$
Hexachlorobenzene	-132.6 ± 0.3	$-132 \cdot 6 \pm 0 \cdot 3$	$-177 \cdot 4 \pm 0 \cdot 4$	$44.8 \pm 0 \cdot 5$
Pentachlorophenol	$-125 \cdot 5 \pm 0 \cdot 6$	-125.3 ± 18.8	-173.8 ± 18.9	$48 \cdot 4 \pm 21 \cdot 1$
1,4-Dimethoxybenzene	$-65 \cdot 6 \pm 0 \cdot 4$	-78.6 ± 0.7	-115.8 ± 0.5	$43 \cdot 7 \pm 0 \cdot 6$
m-Dinitrobenzene	$-50 \cdot 0 \pm 6 \cdot 9$	$-41 \cdot 7 \pm 2 \cdot 1$	$-119 \cdot 8 \pm 6 \cdot 7$	$74 \cdot 0 \pm 7 \cdot 6$
Aliphatic compounds				
Theophylline*	$-63 \cdot 4 \pm 1 \cdot 0$	$-64.7 \pm 2 \cdot 1$	$-124.5 \pm 1 \cdot 1$	$60 \cdot 4 \pm 1 \cdot 6$
2,6-Dimethyl- γ-pyrone	$-62 \cdot 9 \pm 3 \cdot 0$	-59.7 ± 2.5	-86.6 ± 0.7	6.355-3 $+2 \cdot 1$
Glycine*	$-37 \cdot 02 \pm 0 \cdot 10$	-39.41 ± 0.08	$-44.57 \pm 0 \cdot 15$	$6 \cdot 355 \pm 0 \cdot 159$

[^2]couragement and for her permission to use the facilities of her department. Thanks are also due to the Department of Physics, Faculty of Science, Alexandria University, Alexandria, U.A.R., where most of the calculations were carried out.

References

Akamatsu, N. \& Matsunaga, Y. (1956). Bull. Chem. Soc. Japan, 29, 800.
Banerjee, K. \& Bhattacharjya, J. (1938). Science and Culture, 4, 60.
Banerjee, S. (1938). Z. Kristallogr. A 100, 316.
Brown, G. M., Norment, H. G., Jr \& Levy, H. A. (1957). Acta Cryst. 10, 806.
Cruickshank, D.W. J. (1956). Acta Cryst. 9, 915.
French, C. M. (1945). Trans. Faraday Soc. 41, 676.
Goodwin, T. H., Przybylska, M. \& Robertson, J. M. (1950). Acta Cryst. 3, 279.

Gordon, D. A. (1960). J. Phys. Chem. 64, 273.

Hoarau, J., Joussot-Dubien, J., Lemanceau, B., Lumbroso, N. \& Pacault, A. (1956). Cahier de Physique, no. 74, 34.
Krishnan, K.S. \& Banerjee, S. (1935). Phil. Trans. A 234, 265.

Lasheen, M. A. (1964). Phil. Trans. A 256, 357.
Lasheen, M. A. \& Korayem, M. T. (1967). To be published.
Lasheen, M. A. \& Tadros, S. (1968). Acta Cryst. A 24, 287.
Lonsdale, K. \& Krishnan, K. S. (1936). Proc. Roy. Soc. A 156, 597.
Lumbroso-Bader, N. (1956). Ann. Chim. 13, 687.
Marsh, R. E. (1958). Acta Cryst. 11, 654.
Mathieson, A. McL., Robertson, J. M. \& Sinclair, V. C. (1950). Acta Cryst. 3, 245.

Pacault, A. (1946). Ann. Chim. 12, 527.
Perceau, R. (1953). C.r. Acad. Sci. Paris, 236, 76.
Sakurai, T. (1962). Acta Cryst. 15, 1164.
Sinclair, V. C., Robertson, J. M. \& Mathieson, A. McL. (1950). Acta Cryst. 3, 231.

Sutor, D. J. (1958). Acta Cryst. 11, 83.
Trotter, J. (1961). Acta Cryst. 14, 244.
Tulinsky, A. \& White, J. G. (1958). Acta Cryst. 11, 7.
Walley, D. (1967). Private communication.

Acta Cryst. (1968). A24, 295

Crystal Diffraction Profiles for Monochromatic Radiation*

By J.A. Bearden, John G. Marzolf \dagger and John S. Thomsen
Department of Physics, The Johns Hopkins University, Baltimore, Maryland, U.S.A.

(Received 21 July 1967)

Abstract

The instrumental window of a double crystal spectrometer in the dispersive $(1,+1)$ position has been determined experimentally with a Mössbauer source and compared with theoretical predictions. The experiment was done at a wavelength of $0.86 \AA^{*}$ with the $14.4 \mathrm{keV} \gamma$ ray that follows the ${ }^{57} \mathrm{Co} \rightarrow{ }^{57} \mathrm{Fe}$ decay. The crystals employed were quartz (10T1), silicon (111), germanium (111), and calcite (211) (1014), where the indices refer to the structural cells. The theoretical expression for the double-crystal window was calculated as the convolution of the appropriate single-crystal monochromatic profiles predicted by the Darwin-Prins dynamical theory of X-ray diffraction. The agreement between theory and experiment was good and clearly shows the necessity for crystal asymmetry corrections to precision wavelength determinations in certain cases.

Introduction

Less than two years after von Laue had suggested the possibility of crystal diffraction of X-rays, Darwin (1914) published a pair of papers outlining the dynamics of the process. A number of years later this theory was expanded by Prins (1930) to include absorption effects; but, because of the difficulty in obtaining a monochromatic radiation source in the X-ray region, it has only recently become possible to test the theory adequately. Moreover, the theory predicts asymmetric diffraction profiles under certain conditions, and such profiles are of considerable importance in the

[^3]determination of X-ray wavelengths with the precision now required for studies such as the atomic constants evaluation.
Investigations with the two-crystal spectrometer permit certain aspects of the theory to be checked, such as the widths of the diffraction profiles in the nondispersive spectrometer configurations (Parratt, 1932; Allison, 1932; Parratt \& Miller, 1936). These experiments, however, give little information as to the shape of these patterns. In fact, for a pair of identical crystals they can yield no information at all about the asymmetry of either the single-crystal profiles or the doublecrystal patterns in the dispersive positions of the spectrometer (the configurations required for wavelength determination).
The first step toward the solution of this problem came with DuMond's suggestion in 1937 for a multiple (3 or more) crystal spectrometer (DuMond, 1937; Boll-

[^0]: * Present address: Department of Physics, Faculty of Science, Alexandria University, Alexandria, U.A.R.

[^1]: * Absolute mean value taken from International Critical Tables.
 \dagger Values between brackets are calculated from given data.
 \ddagger Absolute value measured directly by authors.

[^2]: \dagger See text for formulae and directions of L and M.

[^3]: * Research supported in part by the U. S. Atomic Energy Commission and based on a doctoral thesis submitted to the Department of Physics, The Johns Hopkins University, 1963. \dagger Present address: Physics Department, LeMoyne College, Syracuse, N. Y. 13214, U.S.A.

